enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Turing machine - Wikipedia

    en.wikipedia.org/wiki/Turing_machine

    An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).

  3. Universal Turing machine - Wikipedia

    en.wikipedia.org/wiki/Universal_Turing_machine

    In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, [1] as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible.

  4. Computing Machinery and Intelligence - Wikipedia

    en.wikipedia.org/wiki/Computing_Machinery_and...

    References. Computing Machinery and Intelligence. " Computing Machinery and Intelligence " is a seminal paper written by Alan Turing on the topic of artificial intelligence. The paper, published in 1950 in Mind, was the first to introduce his concept of what is now known as the Turing test to the general public.

  5. Church–Turing thesis - Wikipedia

    en.wikipedia.org/wiki/Church–Turing_thesis

    In computability theory, the Church–Turing thesis (also known as computability thesis, [ 1 ] the Turing–Church thesis, [ 2 ] the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a thesis about the nature of computable functions. It states that a function on the natural numbers can be calculated by an ...

  6. Complexity class - Wikipedia

    en.wikipedia.org/wiki/Complexity_class

    A Turing machine that "solves" a problem is generally meant to mean one that decides the language. Turing machines enable intuitive notions of "time" and "space". The time complexity of a TM on a particular input is the number of elementary steps that the Turing machine takes to reach either an accept or reject state.

  7. Busy beaver - Wikipedia

    en.wikipedia.org/wiki/Busy_beaver

    A simple generalization is the extension to Turing machines with m symbols instead of just 2 (0 and 1). [10] For example a trinary Turing machine with m = 3 symbols would have the symbols 0, 1, and 2. The generalization to Turing machines with n states and m symbols defines the following generalized busy beaver functions:

  8. Langton's ant - Wikipedia

    en.wikipedia.org/wiki/Langton's_ant

    A red pixel shows the ant's location. Langton's ant is a two-dimensional Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. [1] The idea has been generalized in several different ways, such as turmites which add more colors ...

  9. Nondeterministic Turing machine - Wikipedia

    en.wikipedia.org/.../Nondeterministic_Turing_machine

    e. In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine.