Search results
Results from the WOW.Com Content Network
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
The axioms of a category are satisfied by Set because composition of functions is associative, and because every set X has an identity function id X : X → X which serves as identity element for function composition. The epimorphisms in Set are the surjective maps, the monomorphisms are the injective maps, and the isomorphisms are the ...
List of mathematical functions; List of mathematical identities; List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
In other words, every element of the function's codomain is the image of at most one element of its domain. Surjective function: has a preimage for every element of the codomain, that is, the codomain equals the image. Also called a surjection or onto function. Bijective function: is both an injection and a surjection, and thus invertible ...
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one.
GeoGebra is an interactive mathematics software suite for learning and teaching science, technology, engineering, and mathematics from primary school up to the university level. Constructions can be made with points, vectors, segments, lines, polygons, conic sections, inequalities, implicit polynomials and functions, all of which can be edited ...
Also called infinitesimal calculus A foundation of calculus, first developed in the 17th century, that makes use of infinitesimal numbers. Calculus of moving surfaces an extension of the theory of tensor calculus to include deforming manifolds. Calculus of variations the field dedicated to maximizing or minimizing functionals. It used to be called functional calculus. Catastrophe theory a ...
Many special functions appear as solutions of differential equations or integrals of elementary functions.Therefore, tables of integrals [1] usually include descriptions of special functions, and tables of special functions [2] include most important integrals; at least, the integral representation of special functions.