enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  3. Wax thermostatic element - Wikipedia

    en.wikipedia.org/wiki/Wax_thermostatic_element

    Engines which require a tighter control of temperature, as they are sensitive to "Thermal shock" caused by surges of coolant, may use a "constant inlet temperature" system. In this arrangement the inlet cooling to the engine is controlled by double-valve thermostat which mixes a re-circulating sensing flow with the radiator cooling flow.

  4. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    Consider a gas in cylinder with a free floating piston resting on top of a volume of gas V 1 at a temperature T 1. If the gas is heated so that the temperature of the gas goes up to T 2 while the piston is allowed to rise to V 2 as in Figure 1, then the pressure is kept the same in this process due to the free floating piston being allowed to ...

  5. Rayleigh number - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_number

    In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh [1]) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. [2] [3] [4] It characterises the fluid's flow regime: [5] a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow.

  6. Thermal fluids - Wikipedia

    en.wikipedia.org/wiki/Thermal_fluids

    Heat transfer is a discipline of thermal engineering that concerns the transfer of thermal energy from one physical system to another. Heat transfer is classified into various mechanisms, such as heat conduction, convection, thermal radiation, and phase-change transfer. Engineers also consider the transfer of mass of differing chemical species ...

  7. Heat-transfer fluid - Wikipedia

    en.wikipedia.org/wiki/Heat-transfer_fluid

    Heat Capacity: A fluid’s heat capacity indicates how much thermal energy it can transport and store, impacting the efficiency of the heat transfer process. [ 2 ] Thermal Conductivity and Thermal Diffusivity : These properties influence the rate at which heat is transferred through the fluid, affecting how quickly a system can respond to ...

  8. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    is the isobaric heat capacity of the fluid is 0.4 for heating (wall hotter than the bulk fluid) and 0.33 for cooling (wall cooler than the bulk fluid). [11] The fluid properties necessary for the application of this equation are evaluated at the bulk temperature thus avoiding iteration.

  9. Thermal effusivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_effusivity

    The thermal inertia of a terrestrial planet such as Mars can be approximated from the thermal effusivity of its near-surface geologic materials. In remote sensing applications, thermal inertia represents a complex combination of particle size, rock abundance, bedrock outcropping and the degree of induration (i.e. thickness and hardness). [9]

  1. Related searches thermal fluid rating chart for cars explained pdf free

    thermal fluid rating chart for cars explained pdf free pdf download