Search results
Results from the WOW.Com Content Network
If one removes 1440 mg in 24 h, this is equivalent to removing 1 mg/min. If the blood concentration is 0.01 mg/mL (1 mg/dL), then one can say that 100 mL/min of blood is being "cleared" of creatinine, since, to get 1 mg of creatinine, 100 mL of blood containing 0.01 mg/mL would need to have been cleared.
For example, in the 1930s Widmark measured alcohol and blood by mass, and thus reported his concentrations in units of g/kg or mg/g, weight alcohol per weight blood. Blood is denser than water and 1 mL of blood has a mass of approximately 1.055 grams, thus a mass-volume BAC of 1 g/L corresponds to a mass-mass BAC of 0.948 mg/g.
For example, such a regulation might limit the concentration of NOx to 55 ppmv in a dry combustion exhaust gas corrected to 3 volume percent O 2. As another example, a regulation might limit the concentration of particulate matter to 0.1 grain per standard cubic foot (i.e., scf) of dry exhaust gas corrected to 12 volume percent CO 2.
This improper name persists, especially in elementary textbooks. In biology, the unit "%" is sometimes (incorrectly) used to denote mass concentration, also called mass/volume percentage. A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because ...
Extraction ratio is a measure in renal physiology, primarily used to calculate renal plasma flow in order to evaluate renal function. It measures the percentage of the compound entering the kidney that was excreted into the final urine. [1] Measured in concentration in blood plasma, it may thus be expressed as:
The parameter also indicates the theoretical volume of plasma from which a substance would be completely removed per unit time. Usually, clearance is measured in L/h or mL/min. [2] Excretion, on the other hand, is a measurement of the amount of a substance removed from the body per unit time (e.g., mg/min, μg/min, etc.). While clearance and ...
Whereas osmolality (with an "l") is defined as the number of osmoles (Osm) of solute per kilogram of solvent (osmol/kg or Osm/kg), osmolarity (with an "r") is defined as the number of osmoles of solute per liter (L) of solution (osmol/L or Osm/L). As such, larger numbers indicate a greater concentration of solutes in the plasma.
The survival ratio is commonly expressed as an inactivation ratio (in %) or as the number of reductions in the order of magnitude of the microorganism concentration. For example, a situation where N 0 =10 7 CFU /L and N=10 4 CFU/L would be reported as a 99.9% inactivation or "3-log 10 " removal.