enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    As an example: the partition function for the isothermal-isobaric ensemble, the generalized Boltzmann distribution, divides up probabilities based on particle number, pressure, and temperature. The energy is replaced by the characteristic potential of that ensemble, the Gibbs Free Energy .

  3. Partition function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The partition function is commonly used as a probability-generating function for expectation values of various functions of the random variables. So, for example, taking β {\displaystyle \beta } as an adjustable parameter, then the derivative of log ⁡ ( Z ( β ) ) {\displaystyle \log(Z(\beta ))} with respect to β {\displaystyle \beta }

  4. Fermi–Dirac statistics - Wikipedia

    en.wikipedia.org/wiki/Fermi–Dirac_statistics

    In other words, each single-particle level is a separate, tiny grand canonical ensemble. By the Pauli exclusion principle, there are only two possible microstates for the single-particle level: no particle (energy E = 0), or one particle (energy E = ε). The resulting partition function for that single-particle level therefore has just two terms:

  5. Rotational partition function - Wikipedia

    en.wikipedia.org/wiki/Rotational_partition_function

    The total canonical partition function of a system of identical, indistinguishable, noninteracting atoms or molecules can be divided into the atomic or molecular partition functions : [1] =! with: = /, where is the degeneracy of the jth quantum level of an individual particle, is the Boltzmann constant, and is the absolute temperature of system.

  6. Translational partition function - Wikipedia

    en.wikipedia.org/wiki/Translational_partition...

    In statistical mechanics, the translational partition function, is that part of the partition function resulting from the movement (translation) of the center of mass. For a single atom or molecule in a low pressure gas, neglecting the interactions of molecules , the canonical ensemble q T {\displaystyle q_{T}} can be approximated by: [ 1 ]

  7. Partition function (quantum field theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    For partition functions with Grassmann valued fermion fields, the sources are also Grassmann valued. [7] For example, a theory with a single Dirac fermion requires the introduction of two Grassmann currents and ¯ so that the partition function is

  8. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    What has been presented above is essentially a derivation of the canonical partition function. As one can see by comparing the definitions, the Boltzmann sum over states is equal to the canonical partition function. Exactly the same approach can be used to derive Fermi–Dirac and Bose–Einstein statistics.

  9. Bose–Einstein statistics - Wikipedia

    en.wikipedia.org/wiki/Bose–Einstein_statistics

    That is, the number of particles within the overall system that occupy a given single particle state form a sub-ensemble that is also grand canonical ensemble; hence, it may be analysed through the construction of a grand partition function. Every single-particle state is of a fixed energy, .