enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The energy levels in the hydrogen atom depend only on the principal quantum number n. For a given n , all the states corresponding to ℓ = 0 , … , n − 1 {\displaystyle \ell =0,\ldots ,n-1} have the same energy and are degenerate.

  3. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    Each energy level, or electron shell, or orbit, is designated by an integer, n as shown in the figure. The Bohr model was later replaced by quantum mechanics in which the electron occupies an atomic orbital rather than an orbit, but the allowed energy levels of the hydrogen atom remained the same as in the earlier theory.

  4. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    If it is at a higher energy level, it is said to be excited, or any electrons that have higher energy than the ground state are excited. Such a species can be excited to a higher energy level by absorbing a photon whose energy is equal to the energy difference between the levels. Conversely, an excited species can go to a lower energy level by ...

  5. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]

  6. Ground state - Wikipedia

    en.wikipedia.org/wiki/Ground_state

    Energy levels for an electron in an atom: ground state and excited states. After absorbing energy, an electron may jump from the ground state to a higher-energy excited state. The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system.

  7. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Molecular orbital diagrams are diagrams of molecular orbital (MO) energy levels, shown as short horizontal lines in the center, flanked by constituent atomic orbital (AO) energy levels for comparison, with the energy levels increasing from the bottom to the top. Lines, often dashed diagonal lines, connect MO levels with their constituent AO levels.

  8. Stark effect - Wikipedia

    en.wikipedia.org/wiki/Stark_effect

    Computed energy level spectrum of hydrogen as a function of the electric field near n = 15 for magnetic quantum number m = 0. Each n level consists of n − 1 degenerate sublevels; application of an electric field breaks the degeneracy. Energy levels can cross due to underlying symmetries of motion in the Coulomb potential.

  9. Hydrogen - Wikipedia

    en.wikipedia.org/wiki/Hydrogen

    The ground state energy level of the electron in a hydrogen atom is −13.6 eV, [24] equivalent to an ultraviolet photon of roughly 91 nm wavelength. [25] The energy levels of hydrogen are referred to by consecutive quantum numbers, with = being the ground state.