enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    The graph attention network (GAT) was introduced by Petar Veličković et al. in 2018. [11] Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data.

  3. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Examples of the application of the logistic S-curve to the response of crop yield (wheat) to both the soil salinity and depth to water table in the soil are shown in modeling crop response in agriculture. In artificial neural networks, sometimes non-smooth functions are used instead for efficiency; these are known as hard sigmoids.

  4. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  5. Knowledge graph - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph

    These knowledge graph embeddings allow them to be connected to machine learning methods that require feature vectors like word embeddings. This can complement other estimates of conceptual similarity. [26] [27] Models for generating useful knowledge graph embeddings are commonly the domain of graph neural networks (GNNs). [28]

  6. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models . While individual neurons are simple, many of them together in a network can perform complex tasks.

  7. Spatial network - Wikipedia

    en.wikipedia.org/wiki/Spatial_network

    Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks and biological neural networks are all examples where the underlying space is relevant and where the graph's topology alone does not contain all the information. Characterizing and understanding the structure, resilience and the ...

  8. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    [5] [17] The third-order tensor is a suitable methodology to represent a knowledge graph because it records only the existence or the absence of a relation between entities, [17] and for this reason is simple, and there is no need to know a priori the network structure, [15] making this class of embedding models light, and easy to train even if ...

  9. Node graph architecture - Wikipedia

    en.wikipedia.org/wiki/Node_graph_architecture

    Node graphs are used to visualize, configure and debug these neural network layers. The following are examples of machine learning software using node graph architecture without a graphical interface for the node graphs. PyTorch, GitHub, Facebook; TensorFlow, GitHub, Google; The following are some examples of machine learning software using ...