Search results
Results from the WOW.Com Content Network
The term Minkowski diagram refers to a specific form of spacetime diagram frequently used in special relativity. A Minkowski diagram is a two-dimensional graphical depiction of a portion of Minkowski space , usually where space has been curtailed to a single dimension.
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
Hyperbolic motion can be visualized on a Minkowski diagram, where the motion of the accelerating particle is along the -axis. Each hyperbola is defined by x = ± c 2 / α {\displaystyle x=\pm c^{2}/\alpha } and η = α τ / c {\displaystyle \eta =\alpha \tau /c} (with c = 1 , α = 1 {\displaystyle c=1,\alpha =1} ) in equation ( 2 ).
The simplest example of a Lorentzian manifold is flat spacetime, which can be given as R 4 with coordinates (,,,) and the metric = + + + =. These coordinates actually cover all of R 4 . The flat space metric (or Minkowski metric ) is often denoted by the symbol η and is the metric used in special relativity .
Commonly a Minkowski diagram is used to illustrate this property of Lorentz transformations. Elsewhere, an integral part of light cones is the region of spacetime outside the light cone at a given event (a point in spacetime). Events that are elsewhere from each other are mutually unobservable, and cannot be causally connected.
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:
A curve in is the image of a path or, more properly, an equivalence class of path-images related by re-parametrisation, i.e. homeomorphisms or diffeomorphisms of . When M {\displaystyle M} is time-orientable, the curve is oriented if the parameter change is required to be monotonic .
To obtain the spinors of physics, such as the Dirac spinor, one extends the construction to obtain a spin structure on 4-dimensional space-time (Minkowski space). Effectively, one starts with the tangent manifold of space-time, each point of which is a 4-dimensional vector space with SO(3,1) symmetry, and then builds the spin group at each point.