enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    Quantifying mass transfer allows for design and manufacture of separation process equipment that can meet specified requirements, estimate what will happen in real life situations (chemical spill), etc. Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of ...

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    Here, is the overall mass transfer coefficient, which could be determined by empirical correlations, is the surface area for mass transfer (particularly relevant in membrane-based separations), and ˙ is the mass flowrate of bulk fluid (e.g., mass flowrate of air in an application where water vapor is being separated from the air mixture). At ...

  4. Mass transfer - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer

    Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes ...

  5. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    The analogy is useful for both using heat and mass transport to predict one another, or for understanding systems which experience simultaneous heat and mass transfer. For example, predicting heat transfer coefficients around turbine blades is challenging and is often done through measuring evaporating of a volatile compound and using the ...

  6. Chilton and Colburn J-factor analogy - Wikipedia

    en.wikipedia.org/wiki/Chilton_and_Colburn_J...

    This equation permits the prediction of an unknown transfer coefficient when one of the other coefficients is known. The analogy is valid for fully developed turbulent flow in conduits with Re > 10000, 0.7 < Pr < 160, and tubes where L/d > 60 (the same constraints as the Sieder–Tate correlation). The wider range of data can be correlated by ...

  7. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    This is known as the charge transfer rate. The second is the rate at which reactants are provided, and products removed, from the electrode region by various processes including diffusion, migration, and convection. The latter is known as the mass-transfer rate [Note 1]. These two rates determine the concentrations of the reactants and products ...

  8. Nernst–Planck equation - Wikipedia

    en.wikipedia.org/wiki/Nernst–Planck_equation

    The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces.

  9. Maxwell–Stefan diffusion - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Stefan_diffusion

    A major disadvantage of the Maxwell–Stefan theory is that the diffusion coefficients, with the exception of the diffusion of dilute gases, do not correspond to the Fick's diffusion coefficients and are therefore not tabulated. Only the diffusion coefficients for the binary and ternary case can be determined with reasonable effort.