Search results
Results from the WOW.Com Content Network
Naturally occurring rhenium (75 Re) is 37.4% 185 Re, which is stable (although it is predicted to decay), and 62.6% 187 Re, which is unstable but has a very long half-life (4.12×10 10 years). [4] Among elements with a known stable isotope, only indium and tellurium similarly occur with a stable isotope in lower abundance than the long-lived ...
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods include jumping up and down make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
The isotope rhenium-186m is notable as being one of the longest lived metastable isotopes with a half-life of around 200,000 years. There are 33 other unstable isotopes that have been recognized, ranging from 160 Re to 194 Re, the longest-lived of which is 183 Re with a half-life of 70 days. [31]
This is the longest half-life directly measured for any unstable isotope; [4] only the half-life of tellurium-128 is longer. [ citation needed ] Of the chemical elements, only 1 element ( tin ) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable ...
Rhenium–osmium dating is a form of radiometric dating based on the beta decay of the isotope 187 Re to 187 Os. This normally occurs with a half-life of 41.6 × 10 9 y, [ 1 ] but studies using fully ionised 187 Re atoms have found that this can decrease to only 33 y. [ 2 ]
3.1 abundance, half-life trace, synthetic, stable by keyboard code. 3.2 decay mode ... Template: Infobox rhenium isotopes. 2 languages. Simple English;
See isotopes of tantalum. However, the half-life of this nuclear isomer is so long that it has never been observed to decay, and it thus is an "observationally stable" primordial nuclide, a rare isotope of tantalum. This is the only nuclear isomer with a half-life so long that it has never been observed to decay. It is thus included in this list.
It is prevented from having a stable isotope with 4 protons and 6 neutrons by the very large mismatch in proton/neutron ratio for such a light element. (Nevertheless, beryllium-10 has a half-life of 1.36 million years, which is too short to be primordial, but still indicates unusual stability for a light isotope with such an imbalance.)