Search results
Results from the WOW.Com Content Network
An algorithm is said to be exponential time, if T(n) is upper bounded by 2 poly(n), where poly(n) is some polynomial in n. More formally, an algorithm is exponential time if T(n) is bounded by O(2 n k) for some constant k. Problems which admit exponential time algorithms on a deterministic Turing machine form the complexity class known as EXP.
All polylogarithmic functions of n are o(n ε) for every exponent ε > 0 (for the meaning of this symbol, see small o notation), that is, a polylogarithmic function grows more slowly than any positive exponent. This observation is the basis for the soft O notation Õ(n). [3]
When implemented with page segmentation in order to save memory, the basic algorithm still requires about O( n / log n ) bits of memory (much more than the requirement of the basic page segmented sieve of Eratosthenes using O( √ n / log n ) bits of memory). Pritchard's work reduced the memory requirement at the cost of a large ...
For example, since the run-time of insertion sort grows quadratically as its input size increases, insertion sort can be said to be of order O(n 2). Big O notation is a convenient way to express the worst-case scenario for a given algorithm, although it can also be used to express the average-case — for example, the worst-case scenario for ...
Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)). Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements.
For typical serial sorting algorithms, good behavior is O(n log n), with parallel sort in O(log 2 n), and bad behavior is O(n 2). Ideal behavior for a serial sort is O(n), but this is not possible in the average case. Optimal parallel sorting is O(log n). Swaps for "in-place" algorithms. Memory usage (and use of other computer resources).
An alternative version uses the fact that the Poisson distribution converges to a normal distribution by the Central Limit Theorem. [5]Since the Poisson distribution with parameter converges to a normal distribution with mean and variance , their density functions will be approximately the same:
The siftDown() function is called n times and requires O(log n) work each time, due to its traversal starting from the root node. Therefore, the performance of this algorithm is O(n + n log n) = O(n log n). The heart of the algorithm is the siftDown() function. This constructs binary heaps out of smaller heaps, and may be thought of in two ...