Search results
Results from the WOW.Com Content Network
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.
Discrete choice models take many forms, including: Binary Logit, Binary Probit, Multinomial Logit, Conditional Logit, Multinomial Probit, Nested Logit, Generalized Extreme Value Models, Mixed Logit, and Exploded Logit. All of these models have the features described below in common.
The resulting model is known as logistic regression (or multinomial logistic regression in the case that K-way rather than binary values are being predicted). For the Bernoulli and binomial distributions, the parameter is a single probability, indicating the likelihood of occurrence of a single event.
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
Due to his use of the normal distribution Thurstone was unable to generalise this binary choice into a multinomial choice framework (which required the multinomial logistic regression rather than probit link function), hence why the method languished for over 30 years. However, in the 1960s through 1980s the method was axiomatised and applied ...
The multinomial probit model is a statistical model that can be used to predict the likely outcome of an unobserved multi-way trial given the associated explanatory variables. In the process, the model attempts to explain the relative effect of differing explanatory variables on the different outcomes.
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model. Suppose we had a sample x = ( x 1 , … , x m ) {\textstyle x=(x_{1},\ldots ,x_{m})} where each x i {\textstyle x_{i}} is the number of times that an object of type i {\textstyle i} was observed.