Search results
Results from the WOW.Com Content Network
TAE buffer is commonly prepared as a 50× stock solution for laboratory use. A 50× stock solution can be prepared by dissolving 242 g Tris base in water, adding 57.1 ml glacial acetic acid, and 100 ml of 500 mM EDTA (pH 8.0) solution, and bringing the final volume up to 1 litre.
acetyl chloride SOCl 2 acetic acid (i) Li[AlH 4], ether (ii) H 3 O + ethanol Two typical organic reactions of acetic acid Acetic acid undergoes the typical chemical reactions of a carboxylic acid. Upon treatment with a standard base, it converts to metal acetate and water. With strong bases (e.g., organolithium reagents), it can be doubly deprotonated to give LiCH 2 COOLi. Reduction of acetic ...
[1] Universal buffers consist of mixtures of acids of diminishing strength (increasing pK a), so that the change in pH is approximately proportional to the amount of alkali added. It consists of a mixture of 0.04 M boric acid, 0.04 M phosphoric acid and 0.04 M acetic acid that has been titrated to the desired pH with 0.2 M sodium hydroxide ...
The Monsanto process is an industrial method for the manufacture of acetic acid by catalytic carbonylation of methanol. [1] The Monsanto process has largely been supplanted by the Cativa process, a similar iridium-based process developed by BP Chemicals Ltd, which is more economical and environmentally friendly.
The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a Lewis base that forms 1:1 adducts with a variety of Lewis acids.
It can be prepared by treating a potassium-containing base such as potassium hydroxide or potassium carbonate with acetic acid: CH 3 COOH + KOH → CH 3 COOK + H 2 O. This sort of reaction is known as an acid-base neutralization reaction. At saturation, the sesquihydrate in water solution (CH 3 COOK·1½H 2 O) begins to form semihydrate at 41.3 ...
PIDA can also be prepared from iodosobenzene and glacial acetic acid: [5] C 6 H 5 IO + 2 CH 3 CO 2 H → C 6 H 5 I(O 2 CCH 3) 2 + H 2 O. More recent preparations direct from iodine, acetic acid, and benzene have been reported, using either sodium perborate [6] or potassium peroxydisulfate [7] as the oxidizing agent: [8]
Phenyl acetate is the ester of phenol and acetic acid.It can be produced by reacting phenol with acetic anhydride or acetyl chloride.. Phenyl acetate can be separated into phenol and an acetate salt, via saponification: heating the phenyl acetate with a strong base, such as sodium hydroxide, will produce phenol and an acetate salt (sodium acetate, if sodium hydroxide were used).