Search results
Results from the WOW.Com Content Network
A Boolean algebra can be interpreted either as a special kind of ring (a Boolean ring) or a special kind of distributive lattice (a Boolean lattice). Each interpretation is responsible for different distributive laws in the Boolean algebra. Similar structures without distributive laws are near-rings and near-fields instead of rings and division ...
In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized ...
A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...
Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' [1] Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the ...
For a complete boolean algebra infinite de-Morgan's laws hold. A Boolean algebra is complete if and only if its Stone space of prime ideals is extremally disconnected. Sikorski's extension theorem states that if A is a subalgebra of a Boolean algebra B, then any homomorphism from A to a complete Boolean algebra C can be extended to a morphism ...
Tarski proved that the theory of Boolean algebras is decidable. We write x ≤ y as an abbreviation for x∧y = x, and atom(x) as an abbreviation for ¬x = 0 ∧ ∀y y ≤ x → y = 0 ∨ y = x, read as "x is an atom", in other words a non-zero element with nothing between it and 0. Here are some first-order properties of Boolean algebras:
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
The Boolean prime ideal theorem is the strong prime ideal theorem for Boolean algebras. Thus the formal statement is: Let B be a Boolean algebra, let I be an ideal and let F be a filter of B, such that I and F are disjoint. Then I is contained in some prime ideal of B that is disjoint from F. The weak prime ideal theorem for Boolean algebras ...