enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    A Boolean algebra can be interpreted either as a special kind of ring (a Boolean ring) or a special kind of distributive lattice (a Boolean lattice). Each interpretation is responsible for different distributive laws in the Boolean algebra. Similar structures without distributive laws are near-rings and near-fields instead of rings and division ...

  3. Boolean algebra (structure) - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra_(structure)

    In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized ...

  4. Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra

    A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...

  5. Boolean algebras canonically defined - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebras...

    Boolean algebra is a mathematically rich branch of abstract algebra. Stanford Encyclopaedia of Philosophy defines Boolean algebra as 'the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.' [1] Just as group theory deals with groups, and linear algebra with vector spaces, Boolean algebras are models of the ...

  6. Complete Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Complete_Boolean_algebra

    For a complete boolean algebra infinite de-Morgan's laws hold. A Boolean algebra is complete if and only if its Stone space of prime ideals is extremally disconnected. Sikorski's extension theorem states that if A is a subalgebra of a Boolean algebra B, then any homomorphism from A to a complete Boolean algebra C can be extended to a morphism ...

  7. List of first-order theories - Wikipedia

    en.wikipedia.org/wiki/List_of_first-order_theories

    Tarski proved that the theory of Boolean algebras is decidable. We write x ≤ y as an abbreviation for x∧y = x, and atom(x) as an abbreviation for ¬x = 0 ∧ ∀y y ≤ x → y = 0 ∨ y = x, read as "x is an atom", in other words a non-zero element with nothing between it and 0. Here are some first-order properties of Boolean algebras:

  8. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  9. Boolean prime ideal theorem - Wikipedia

    en.wikipedia.org/wiki/Boolean_prime_ideal_theorem

    The Boolean prime ideal theorem is the strong prime ideal theorem for Boolean algebras. Thus the formal statement is: Let B be a Boolean algebra, let I be an ideal and let F be a filter of B, such that I and F are disjoint. Then I is contained in some prime ideal of B that is disjoint from F. The weak prime ideal theorem for Boolean algebras ...