enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...

  4. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The matrix ¯ is the Schur complement of Σ 22 in Σ. That is, the equation above is equivalent to inverting the overall covariance matrix, dropping the rows and columns corresponding to the variables being conditioned upon, and inverting back to get the conditional covariance matrix.

  5. Optimal estimation - Wikipedia

    en.wikipedia.org/wiki/Optimal_estimation

    Here () is taken to be the so-called "a-priori" distribution: ^ denotes the a-priori values for while is its covariance matrix. The nice thing about the Gaussian distributions is that only two parameters are needed to describe them and so the whole problem can be converted once again to matrices.

  6. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    When these assumptions are satisfied, the following covariance matrix K applies for the 1D profile parameters , , and under i.i.d. Gaussian noise and under Poisson noise: [9] = , = , where is the width of the pixels used to sample the function, is the quantum efficiency of the detector, and indicates the standard deviation of the measurement noise.

  7. Matrix normal distribution - Wikipedia

    en.wikipedia.org/wiki/Matrix_normal_distribution

    The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ⁡ ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...

  8. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables.

  9. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    When N(t) is colored (correlated in time) Gaussian noise with zero mean and covariance function (,) = [() ()], we cannot sample independent discrete observations by evenly spacing the time. Instead, we can use K–L expansion to decorrelate the noise process and get independent Gaussian observation 'samples'.