Search results
Results from the WOW.Com Content Network
Some calculators have a mod() function button, and many programming languages have a similar function, expressed as mod(a, n), for example. Some also support expressions that use "%", "mod", or "Mod" as a modulo or remainder operator, such as a % n or a mod n. For environments lacking a similar function, any of the three definitions above can ...
Some features like operator overloading or unsigned integer data types are omitted to simplify the language and avoid possible programming mistakes. The Java syntax has been gradually extended in the course of numerous major JDK releases , and now supports abilities such as generic programming and anonymous functions (function literals, called ...
Most programming languages support binary operators and a few unary operators, with a few supporting more operands, such as the ?: operator in C, which is ternary. There are prefix unary operators, such as unary minus -x , and postfix unary operators, such as post-increment x++ ; and binary operations are infix, such as x + y or x = y .
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
APL uses the term operator in Heaviside’s sense as a moderator of a function as opposed to some other programming language's use of the same term as something that operates on data, ref. relational operator and operators generally. Other programming languages also sometimes use this term interchangeably with function, however both terms are ...
In computer science, pseudocode is a description of the steps in an algorithm using a mix of conventions of programming languages (like assignment operator, conditional operator, loop) with informal, usually self-explanatory, notation of actions and conditions.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.