Search results
Results from the WOW.Com Content Network
Starch (a polymer of glucose) is used as a storage polysaccharide in plants, being found in the form of both amylose and the branched amylopectin. In animals, the structurally similar glucose polymer is the more densely branched glycogen, sometimes called "animal starch". Glycogen's properties allow it to be metabolized more quickly, which ...
Glucose circulates in the blood of animals as blood sugar. [5] [7] The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. [7] Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose ...
Glucose may alternatively be formed from the phosphorolysis or hydrolysis of intracellular starch or glycogen. In animals, an isozyme of hexokinase called glucokinase is also used in the liver, which has a much lower affinity for glucose (K m in the vicinity of normal glycemia), and differs in regulatory properties. The different substrate ...
α(1→4)-glycosidic linkages in the glycogen oligomer α(1→4)-glycosidic and α(1→6)-glycosidic linkages in the glycogen oligomer. Glycogen is a branched biopolymer consisting of linear chains of glucose residues with an average chain length of approximately 8–12 glucose units and 2,000-60,000 residues per one molecule of glycogen.
All polymers are made of repetitive units called monomers. Biopolymers often have a well-defined structure, though this is not a defining characteristic (example: lignocellulose ): The exact chemical composition and the sequence in which these units are arranged is called the primary structure , in the case of proteins.
The uniformity of both specific types of molecules (the biomolecules) and of certain metabolic pathways are invariant features among the wide diversity of life forms; thus these biomolecules and metabolic pathways are referred to as "biochemical universals" [4] or "theory of material unity of the living beings", a unifying concept in biology ...
l-Glucose is an organic compound with formula C 6 H 12 O 6 or O=CH[CH(OH)] 5 H, specifically one of the aldohexose monosaccharides. As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l-Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory.
In addition, RNA is a single-stranded polymer that can, like proteins, fold into a very large number of three-dimensional structures. Some of these structures provide binding sites for other molecules and chemically active centers that can catalyze specific chemical reactions on those bound molecules.