Search results
Results from the WOW.Com Content Network
where φ = 1 + √ 5 / 2 is the golden ratio. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = √ 8φ+7 / 2 = √ 11+4 √ 5 / 2 ≈ 2.233.
Curvilinear barrel distortion Curvilinear pincushion distortion. Curvilinear perspective, also five-point perspective, is a graphical projection used to draw 3D objects on 2D surfaces, for which (straight) lines on the 3D object are projected to curves on the 2D surface that are typically not straight (hence the qualifier "curvilinear" [citation needed]).
Any two opposite edges of a tetrahedron lie on two skew lines, and the distance between the edges is defined as the distance between the two skew lines. Let d {\displaystyle d} be the distance between the skew lines formed by opposite edges a {\displaystyle a} and b − c {\displaystyle \mathbf {b} -\mathbf {c} } as calculated here .
The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...
In a cuboctahedron, the long radius (center to vertex) is the same as the edge length; thus its long diameter (vertex to opposite vertex) is 2 edge lengths. [14] Its center is like the apical vertex of a canonical pyramid: one edge length away from all the other vertices. (In the case of the cuboctahedron, the center is in fact the apex of 6 ...
This group has six mirror planes, each containing two edges of the cube or one edge of the tetrahedron, a single S 4 axis, and two C 3 axes. T d is isomorphic to S 4 , the symmetric group on 4 letters, because there is a 1-to-1 correspondence between the elements of T d and the 24 permutations of the four 3-fold axes.
Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters: [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.
Given a point A 0 in a Euclidean space and a translation S, define the point A i to be the point obtained from i applications of the translation S to A 0, so A i = S i (A 0).The set of vertices A i with i any integer, together with edges connecting adjacent vertices, is a sequence of equal-length segments of a line, and is called the regular apeirogon as defined by H. S. M. Coxeter.