Search results
Results from the WOW.Com Content Network
In his widely cited book, Statistics for Spatial Data, [4] Cressie established a general spatial model that unified statistics for geostatistical data, regular and irregular lattice data, point patterns, and random sets, building on earlier research of his and many others on statistical theory, methodology, and applications for spatial data.
[4] Nevertheless, Mousavi recommends this book as an "introductory text on spatial information science" aimed at practitioners, and commends its use of QR codes and word clouds. [1] Stein praises the book's attempt to bridge mathematics and geography, and its potential use as a first step towards that bridge for practitioners. [2]
Jorge Mateu is a Spanish mathematician, author, and academic.He is a professor of statistics within the Department of Mathematics at University Jaume I of Castellon [1] and director of the Unit Eurocop for Data Science in criminal activities in the same department.
Spatial analysis confronts many fundamental issues in the definition of its objects of study, in the construction of the analytic operations to be used, in the use of computers for analysis, in the limitations and particularities of the analyses which are known, and in the presentation of analytic results.
The concept of a spatial weight is used in spatial analysis to describe neighbor relations between regions on a map. [1] If location i {\displaystyle i} is a neighbor of location j {\displaystyle j} then w i j ≠ 0 {\displaystyle w_{ij}\neq 0} otherwise w i j = 0 {\displaystyle w_{ij}=0} .
Geostatistics is a branch of statistics focusing on spatial or spatiotemporal datasets.Developed originally to predict probability distributions of ore grades for mining operations, [1] it is currently applied in diverse disciplines including petroleum geology, hydrogeology, hydrology, meteorology, oceanography, geochemistry, geometallurgy, geography, forestry, environmental control, landscape ...
In spatial analysis, four major problems interfere with an accurate estimation of the statistical parameter: the boundary problem, scale problem, pattern problem (or spatial autocorrelation), and modifiable areal unit problem. [1] The boundary problem occurs because of the loss of neighbours in analyses that depend on the values of the neighbours.
One is thus making a distinction between the experimental variogram that is a visualization of a possible spatial/temporal correlation and the variogram model that is further used to define the weights of the kriging function. Note that the experimental variogram is an empirical estimate of the covariance of a Gaussian process.