Search results
Results from the WOW.Com Content Network
The classic model for the enzyme-substrate interaction is the induced fit model. [4] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.
Diagram illustrating the induced fit model of enzyme activity. Date: 11 October 2006: Source: Provided by TimVickers: Author: Created by TimVickers, vectorized by Fvasconcellos: Permission (Reusing this file)
The induced fit model is a development of the lock-and-key model and assumes that an active site is flexible and changes shape until the substrate is completely bound. This model is similar to a person wearing a glove: the glove changes shape to fit the hand. The enzyme initially has a conformation that attracts its substrate.
The favoured model for the enzyme–substrate interaction is the induced fit model. [53] This model proposes that the initial interaction between enzyme and substrate is relatively weak, but that these weak interactions rapidly induce conformational changes in the enzyme that strengthen binding.
The KNF model follows the structural theory of the induced fit model of substrate binding to an enzyme. [5] A slight change in the conformation of an enzyme improves its binding affinity to the transition state of the ligand, thus catalyzing a reaction.
The sequential model of allosteric regulation holds that subunits are not connected in such a way that a conformational change in one induces a similar change in the others. Thus, all enzyme subunits do not necessitate the same conformation. Moreover, the sequential model dictates that molecules of a substrate bind via an induced fit protocol ...
Enzyme changes shape by induced fit upon substrate binding to form enzyme-substrate complex. ... 8.3.2 This early model explains enzyme specificity, ...
The model is used in a variety of biochemical situations other than enzyme-substrate interaction, including antigen–antibody binding, DNA–DNA hybridization, and protein–protein interaction. [ 17 ] [ 18 ] It can be used to characterize a generic biochemical reaction, in the same way that the Langmuir equation can be used to model generic ...