Search results
Results from the WOW.Com Content Network
A relativistic jet emitted from galaxy M87, as seen by the Hubble Space Telescope. A jet is a stream of fluid that is projected into a surrounding medium, usually from some kind of a nozzle, aperture or orifice. [1] Jets can travel long distances [quantify] without dissipating. Jet fluid has higher speed compared to the surrounding fluid medium.
A free jet of air entrains molecules of air from its immediate surroundings causing an axisymmetrical "tube" or "sleeve" of low pressure around the jet (see Diagram 1). The resultant forces from this low pressure tube end up balancing any perpendicular flow instability, which stabilises the jet in a straight line.
Plume shapes can be influenced by flow in the ambient fluid (for example, if local wind blowing in the same direction as the plume results in a co-flowing jet). This usually causes a plume which has initially been 'buoyancy-dominated' to become 'momentum-dominated' (this transition is usually predicted by a dimensionless number called the ...
In fluid dynamics, a synthetic jet flow—is a type of jet flow, which is made up of the surrounding fluid. [1] Synthetic jets are produced by periodic ejection and suction of fluid from an opening. This oscillatory motion may be driven by a piston or diaphragm inside a cavity among other ways.
The coefficient of contraction is defined as the ratio between the area of the jet at the vena contracta and the area of the orifice. C c = Area at vena contracta/Area of orifice. The typical value may be taken as 0.611 for a sharp orifice (concentric with the flow channel). [2] [3] The smaller the value, the greater the effect the vena ...
When the jet Reynolds number or the plume Grashof number is large, the full flow field constitutes two regions of different extent: a thin boundary-layer flow that may identified as the jet or as the plume and a slowly moving fluid in the large outer region encompassing the jet or the plume. The Schneider flow describing the latter motion is an ...
In power generation, this phenomenon is used in steam jet air ejectors to maintain condenser vacuum by removing non-condensible gases from the condenser. In theorical aerodynamics applications the entrainment velocity , which expresses the rate of change of the entrainment, is often used to solve the von Kármán integral for turbulent boundary ...
In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, [1] to the problem derived by Schlichting in 1933 [2] and the corresponding problem in axisymmetric coordinates is called as Schlichting jet.