Search results
Results from the WOW.Com Content Network
Outliers: The Story of Success is a non-fiction book written by Malcolm Gladwell and published by Little, Brown and Company on November 18, 2008. In Outliers , Gladwell examines the factors that contribute to high levels of success.
In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. . The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of locati
In general, if the nature of the population distribution is known a priori, it is possible to test if the number of outliers deviate significantly from what can be expected: for a given cutoff (so samples fall beyond the cutoff with probability p) of a given distribution, the number of outliers will follow a binomial distribution with parameter ...
[51] [52] [53] Outliers was a number 1 New York Times bestseller for 11 straight weeks and was Time's number 10 non-fiction book of 2008 as well as named to the San Francisco Chronicle 's list of the 50 best non-fiction books of 2008. [54] [55] [56] Fortune described The Tipping Point as "a fascinating book that makes you see the world in a ...
Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal N(0,σ 2) Population. In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread.
In statistics, Dixon's Q test, or simply the Q test, is used for identification and rejection of outliers.This assumes normal distribution and per Robert Dean and Wilfrid Dixon, and others, this test should be used sparingly and never more than once in a data set.
Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. It is named after the engineer-turned-biostatistician Charles P. Winsor (1895–1951). The effect is the same as clipping in signal processing.
In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.