Search results
Results from the WOW.Com Content Network
In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...
The Church numerals are a representation of the natural numbers using lambda notation. The method is named for Alonzo Church , who first encoded data in the lambda calculus this way. Terms that are usually considered primitive in other notations (such as integers, Booleans, pairs, lists, and tagged unions) are mapped to higher-order functions ...
The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
In computer programming, an anonymous function (function literal, expression or block) is a function definition that is not bound to an identifier.Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function. [1]
map function, found in many functional programming languages, is one example of a higher-order function. It takes as arguments a function f and a collection of elements, and as the result, returns a new collection with f applied to each element from the collection.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
Formally, a substitution is an unbounded list of terms, written M 1.M 2..., where M i is the replacement for the ith free variable. The increasing operation in step 3 is sometimes called shift and written ↑ k where k is a natural number indicating the amount to increase the variables, and is defined by = (+).