Search results
Results from the WOW.Com Content Network
However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast).
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
A sound speed profile shows the speed of sound in water at different vertical levels. It has two general representations: It has two general representations: tabular form, with pairs of columns corresponding to ocean depth and the speed of sound at that depth, respectively.
Sound cannot travel through a ... Sound moves the fastest in solid atomic hydrogen at about 36,000 m/s (129,600 km/h; 80,530 mph). ... The way a sound changes over ...
Sonar (sound navigation and ranging or sonic navigation and ranging) [2] is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances , communicate with or detect objects on or under the surface of the water, such as other vessels.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These waves can travel through any type of material, including fluids, and can travel nearly 1.7 times faster than the S waves. In air, they take the form of sound waves, hence they travel at the speed of sound. Typical speeds are 330 m/s in air, 1450 m/s in water and about 5000 m/s in granite.