Search results
Results from the WOW.Com Content Network
A protein fold refers to the general protein architecture, like a helix bundle, β-barrel, Rossmann fold or different "folds" provided in the Structural Classification of Proteins database. [11] A related concept is protein topology.
Protein side chains exhibit rotamers, whose distribution is determined by their steric interaction with different conformations of the backbone. This effect is evident from statistical analysis of the conformations of protein side chains in the Backbone-dependent rotamer library .
A network of alternative conformations in catalase (Protein Data Bank code: 1gwe) with diverse properties. Multiple phenomena define the network: van der Waals interactions (blue dots and line segments) between sidechains, a hydrogen bond (dotted green line) through a partial-occupancy water (brown), coupling through the locally mobile backbone (black), and perhaps electrostatic forces between ...
A change in protein conformation produces a change in the net orientation of the dye relative to the surface plane and therefore the intensity of the second harmonic beam. In a protein sample with a well-defined orientation, the tilt angle of the probe can be quantitatively determined, in real space and real time.
These are referred to as metamorphic proteins. [5] Finally other proteins appear not to adopt any stable conformation and are referred to as intrinsically disordered. [6] Proteins frequently contain two or more domains, each have a different fold separated by intrinsically disordered regions. These are referred to as multi-domain proteins.
Levinthal's paradox is a thought experiment in the field of computational protein structure prediction; protein folding seeks a stable energy configuration. An algorithmic search through all possible conformations to identify the minimum energy configuration (the native state) would take an immense duration; however in reality protein folding happens very quickly, even in the case of the most ...
A hairpin is a special case of a turn, in which the direction of the protein backbone reverses and the flanking secondary structure elements interact. For example, a beta hairpin connects two hydrogen-bonded , antiparallel β-strands (a rather confusing name, since a β-hairpin may contain many types of turns – α, β, γ, etc.).
This movie depicts the 3-D structures of each of the representative conformations of the Markov State Model of Pin1 WW domain. In computational chemistry, conformational ensembles, also known as structural ensembles, are experimentally constrained computational models describing the structure of intrinsically unstructured proteins.