enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limiting reagent - Wikipedia

    en.wikipedia.org/wiki/Limiting_reagent

    The limiting reagent (or limiting reactant or limiting agent) in a chemical reaction is a reactant that is totally consumed when the chemical reaction is completed. [ 1 ] [ 2 ] The amount of product formed is limited by this reagent, since the reaction cannot continue without it.

  3. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    The limiting reagent is the reagent that limits the amount of product that can be formed and is completely consumed when the reaction is complete. An excess reactant is a reactant that is left over once the reaction has stopped due to the limiting reactant being exhausted.

  4. Conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Conversion_(chemistry)

    Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...

  5. Yield (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Yield_(chemistry)

    The limiting reagent determines the theoretical yield—the relative quantity of moles of reactants and the product formed in a chemical reaction. Other reactants are said to be present in excess. The actual yield—the quantity physically obtained from a chemical reaction conducted in a laboratory—is often less than the theoretical yield. [ 8 ]

  6. Carothers equation - Wikipedia

    en.wikipedia.org/wiki/Carothers_equation

    If neither monomer is in excess, then r = 1 and the equation reduces to the equimolar case above. The effect of the excess reactant is to reduce the degree of polymerization for a given value of p. In the limit of complete conversion of the limiting reagent monomer, p → 1 and ¯ +

  7. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    Unlike more common pseudo-first-order analysis, in which an overwhelming excess of one or more reagents is used relative to a species of interest, RPKA probes reactions at synthetically relevant conditions (i.e. with concentrations and reagent ratios resembling those used in the reaction when not exploring the rate law.)

  8. Iodine clock reaction - Wikipedia

    en.wikipedia.org/wiki/Iodine_clock_reaction

    This first step is the rate determining step. Next, the iodate in excess will oxidize the iodide generated above to form iodine: IO − 3 + 5 I − + 6 H + → 3 I 2 + 3 H 2 O. However, the iodine is reduced immediately back to iodide by the bisulfite: I 2 + HSO − 3 + H 2 O → 2 I − + HSO − 4 + 2 H +

  9. Reagent - Wikipedia

    en.wikipedia.org/wiki/Reagent

    In chemistry, a reagent (/ r i ˈ eɪ dʒ ən t / ree-AY-jənt) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. [1] The terms reactant and reagent are often used interchangeably, but reactant specifies a substance consumed in the course of a chemical reaction. [ 1 ]