Search results
Results from the WOW.Com Content Network
This method is most useful when there are only two reactants. One reactant (A) is chosen, and the balanced chemical equation is used to determine the amount of the other reactant (B) necessary to react with A. If the amount of B actually present exceeds the amount required, then B is in excess and A is the limiting reagent.
r is the stoichiometric ratio of reactants, the excess reactant is conventionally the denominator so that r < 1. If neither monomer is in excess, then r = 1 and the equation reduces to the equimolar case above. The effect of the excess reactant is to reduce the degree of polymerization for a given value of p.
If the concentration of a reactant remains constant (because it is a catalyst, or because it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, leading to a pseudo–first-order (or occasionally pseudo–second-order) rate equation.
The limiting reagent is the reagent that limits the amount of product that can be formed and is completely consumed when the reaction is complete. An excess reactant is a reactant that is left over once the reaction has stopped due to the limiting reactant being exhausted.
Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction. The limiting reagent determines the theoretical yield—the relative quantity of moles of reactants and the product formed in a chemical reaction. Other reactants are said to be present in excess.
As percentage yield is affected by chemical equilibrium, allowing one or more reactants to be in great excess can increase the yield. However, this may not be considered as a "greener" method, as it implies a greater amount of the excess reactant remain unreacted and therefore wasted.
The simplest way to make sure your deposits of more than $250,000 are covered is to move any excess money into a new account at a different FDIC-insured bank. The FDIC insures up to $250,000 per ...
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...