Search results
Results from the WOW.Com Content Network
Methanation is the conversion of carbon monoxide and carbon dioxide (CO x) to methane (CH 4) through hydrogenation. The methanation reactions of CO x were first discovered by Sabatier and Senderens in 1902. [1] CO x methanation has many practical applications.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Biological methanation takes place in a separate methanation plant. The gas is completely converted into methane before the infeed into the gas grid. The carbon dioxide, produced in a gas processing system, is converted into methane in a separate methanation plant, by adding hydrogen and can then be fed into the gas grid.
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
In industrial chemistry, coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen (H 2), carbon dioxide (CO 2), methane (CH 4), and water vapour (H 2 O)—from coal and water, air and/or oxygen.
Own work based on: File:Flammability diagram methane.png Redrawing of original by Power.corrupts as vector graphic. Possible source: Mashuga, CV; Crowl DA (1998). "Application of the flammability diagram for evaluation of fire and explosion hazards of flammable vapors". Process Safety Progress. 17 (3): 176–183. Author