Search results
Results from the WOW.Com Content Network
In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.
The equation is named after Lord Rayleigh, who introduced it in 1880. [2] The Orr–Sommerfeld equation – introduced later, for the study of stability of parallel viscous flow – reduces to Rayleigh's equation when the viscosity is zero. [3] Rayleigh's equation, together with appropriate boundary conditions, most often poses an eigenvalue ...
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is
Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points. In mathematics , specifically in differential equations , an equilibrium point is a constant solution to a differential equation.
In the linear phase, the fluid movement can be closely approximated by linear equations, and the amplitude of perturbations is growing exponentially with time. In the non-linear phase, perturbation amplitude is too large for a linear approximation, and non-linear equations are required to describe fluid motions. In general, the density ...
Equation gives the stability requirement for the FTCS scheme as applied to one-dimensional heat equation. It says that for a given , the allowed value of must be small enough to satisfy equation . Similar analysis shows that a FTCS scheme for linear advection is unconditionally unstable.
To determine whether the flow is stable or unstable, one often employs the method of linear stability analysis. In this type of analysis, the governing equations and boundary conditions are linearized. This is based on the fact that the concept of 'stable' or 'unstable' is based on an infinitely small disturbance.