enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  3. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    This has the same form as an equation for a straight line: = +, where x is the reciprocal of T. So, when a reaction has a rate constant obeying the Arrhenius equation, a plot of ln k versus T −1 gives a straight line, whose slope and intercept can be used to determine E a and A respectively. This procedure is common in experimental chemical ...

  4. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]

  5. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    where the final substitution, N 0 = e C, is obtained by evaluating the equation at t = 0, as N 0 is defined as being the quantity at t = 0. This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay.

  6. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    In consequence, the reaction rate constant increases rapidly with temperature , as shown in the direct plot of against . (Mathematically, at very high temperatures so that E a ≪ R T {\displaystyle E_{\text{a}}\ll RT} , k {\displaystyle k} would level off and approach A {\displaystyle A} as a limit, but this case does not occur under practical ...

  7. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The Eyring equation (occasionally also known as Eyring–Polanyi equation) is an equation used in chemical kinetics to describe changes in the rate of a chemical reaction against temperature. It was developed almost simultaneously in 1935 by Henry Eyring , Meredith Gwynne Evans and Michael Polanyi .

  8. Brønsted catalysis equation - Wikipedia

    en.wikipedia.org/wiki/Brønsted_catalysis_equation

    A plot of the common logarithm of the reaction rate constant k versus the logarithm of the ionization constant K a for a series of acids (for example a group of substituted phenols or carboxylic acids) gives a straight line with slope α and intercept C. The Brønsted equation is a free-energy relationship.

  9. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The apparent unimolecular rate constant k cat is also called turnover number, and denotes the maximum number of enzymatic reactions catalysed per second. The Michaelis–Menten equation [10] describes how the (initial) reaction rate v 0 depends on the position of the substrate-binding equilibrium and the rate constant k 2.