Search results
Results from the WOW.Com Content Network
The geoid undulation (also known as geoid height or geoid anomaly), N, is the height of the geoid relative to a given ellipsoid of reference. N = h − H {\displaystyle N=h-H} The undulation is not standardized, as different countries use different mean sea levels as reference, but most commonly refers to the EGM96 geoid.
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The geometrical separation between the geoid and a reference ellipsoid is called geoidal undulation, and it varies globally between ±110 m based on the GRS 80 ellipsoid. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f.
They are used as the geoid reference in the World Geodetic System. The NGA provides the models in two formats: as the series of numerical coefficients to the spherical harmonics which define the model, or a dataset giving the geoid height at each coordinate at a given resolution. [1]
Given the dimensions of the ellipsoid, the conversion from lat/lon/height-above-ellipsoid coordinates to X-Y-Z is straightforward—calculate the X-Y-Z for the given lat-lon on the surface of the ellipsoid and add the X-Y-Z vector that is perpendicular to the ellipsoid there and has length equal to the point's height above the ellipsoid.
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
The geometrical separation between it and the reference ellipsoid is called the geoidal undulation, or more usually the geoid-ellipsoid separation, N. It varies globally between ±110 m. A reference ellipsoid, customarily chosen to be the same size (volume) as the geoid, is described by its semi-major axis (equatorial radius) a and flattening f.
There are two types of ellipsoid: mean and reference. A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid.It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid.