enow.com Web Search

  1. Ads

    related to: transversals and parallel line problems worksheet pdf printable

Search results

  1. Results from the WOW.Com Content Network
  2. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  3. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Euclid's Proposition 28 extends this result in two ways. First, if a transversal intersects two lines so that corresponding angles are congruent, then the lines are parallel. Second, if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel.

  4. Transversal plane - Wikipedia

    en.wikipedia.org/wiki/Transversal_plane

    Transversal plane theorem for planes: Planes intersected by a transversal plane are parallel if and only if their alternate interior dihedral angles are congruent. Transversal line containment theorem: If a transversal line is contained in any plane other than the plane containing all the lines, then the plane is a transversal plane.

  5. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The converse of the theorem implies that a homothety transforms a line in a parallel line. Conversely, the direct statement of the intercept theorem implies that a geometric transformation is always a homothety of center O, if it fixes the lines passing through O and transforms every other line into a parallel line.

  6. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7] For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that ...

  7. Transversality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Transversality_(mathematics)

    The notion of transversality of a pair of submanifolds is easily extended to transversality of a submanifold and a map to the ambient manifold, or to a pair of maps to the ambient manifold, by asking whether the pushforwards of the tangent spaces along the preimage of points of intersection of the images generate the entire tangent space of the ambient manifold. [2]

  1. Ads

    related to: transversals and parallel line problems worksheet pdf printable