Search results
Results from the WOW.Com Content Network
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.
In probability theory, a logit-normal distribution is a probability distribution of a random variable whose logit has a normal distribution.If Y is a random variable with a normal distribution, and t is the standard logistic function, then X = t(Y) has a logit-normal distribution; likewise, if X is logit-normally distributed, then Y = logit(X)= log (X/(1-X)) is normally distributed.
Extreme values like maximum one-day rainfall and river discharge per month or per year often follow a log-normal distribution. [12] The log-normal distribution, however, needs a numeric approximation. As the log-logistic distribution, which can be solved analytically, is similar to the log-normal distribution, it can be used instead.
Conversely, if X is a lognormal (μ, σ 2) random variable then log X is a normal (μ, σ 2) random variable. If X is an exponential random variable with mean β, then X 1/γ is a Weibull (γ, β) random variable. The square of a standard normal random variable has a chi-squared distribution with one degree of freedom.
As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution .
The shifted log-logistic distribution is a probability distribution also known as the generalized log-logistic or the three-parameter log-logistic distribution. [ 1 ] [ 2 ] It has also been called the generalized logistic distribution, [ 3 ] but this conflicts with other uses of the term: see generalized logistic distribution .
It is customary to transform data logarithmically to fit symmetrical distributions (like the normal and logistic) to data obeying a distribution that is positively skewed (i.e. skew to the right, with mean > mode, and with a right hand tail that is longer than the left hand tail), see lognormal distribution and the loglogistic distribution. A ...
This comes as a superior alternative to using the Normal distribution to model asset returns. An R package, JSUparameters , was developed in 2021 to aid in the estimation of the parameters of the best-fitting Johnson's S U {\displaystyle S_{U}} -distribution for a given dataset.