Search results
Results from the WOW.Com Content Network
In this case, the longitude is also called the right ascension of the ascending node (RAAN). The angle is measured eastwards (or, as seen from the north, counterclockwise) from the FPA to the node. [2] [3] An alternative is the local time of the ascending node (LTAN), based on the local mean time at which the
Local time of the ascending node, an orbital element Topics referred to by the same term This disambiguation page lists articles associated with the title LTAN .
computes the difference in seconds between two time_t values time: returns the current time of the system as a time_t value, number of seconds, (which is usually time since an epoch, typically the Unix epoch). The value of the epoch is operating system dependent; 1900 and 1970 are often used. See RFC 868. clock
In the case of objects outside the Solar System, the ascending node is the node where the orbiting secondary passes away from the observer, and the descending node is the node where it moves towards the observer. [5], p. 137. The position of the node may be used as one of a set of parameters, called orbital elements, which
An orbiting body's mean longitude is calculated L = Ω + ω + M, where Ω is the longitude of the ascending node, ω is the argument of the pericenter and M is the mean anomaly, the body's angular distance from the pericenter as if it moved with constant speed rather than with the variable speed of an elliptical orbit.
In logical clock systems each process has two data structures: logical local time and logical global time. Logical local time is used by the process to mark its own events, and logical global time is the local information about global time. A special protocol is used to update logical local time after each local event, and logical global time ...
In celestial mechanics, true longitude is the ecliptic longitude at which an orbiting body could actually be found if its inclination were zero. Together with the inclination and the ascending node, the true longitude can tell us the precise direction from the central object at which the body would be located at a particular time.
The primary direction of the system is the March equinox, the ascending node of the ecliptic (red) on the celestial equator (blue). Right ascension is measured eastward up to 24 h along the celestial equator from the primary direction.