enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    Let G = (V,w) be an instance of the travelling salesman problem. That is, G is a complete graph on the set V of vertices, and the function w assigns a nonnegative real weight to every edge of G. According to the triangle inequality, for every three vertices u, v, and x, it should be the case that w(uv) + w(vx) ≥ w(ux).

  3. Littlewood–Offord problem - Wikipedia

    en.wikipedia.org/wiki/Littlewood–Offord_problem

    The first upper bound for this problem was proven (for d = 1 and d = 2) in 1938 by John Edensor Littlewood and A. Cyril Offord. [1] This Littlewood–Offord lemma states that if S is a set of n real or complex numbers of absolute value at least one and A is any disc of radius one, then not more than ( c log ⁡ n / n ) 2 n {\displaystyle {\Big ...

  4. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.

  5. Obstacle problem - Wikipedia

    en.wikipedia.org/wiki/Obstacle_problem

    The obstacle problem is a classic motivating example in the mathematical study of variational inequalities and free boundary problems. The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed, and which is constrained to lie above a given obstacle.

  6. Schur's inequality - Wikipedia

    en.wikipedia.org/wiki/Schur's_inequality

    The standard form of Schur's is the case of this inequality where x = a, y = b, z = c, k = 1, ƒ(m) = m r. [ 1 ] Another possible extension states that if the non-negative real numbers x ≥ y ≥ z ≥ v {\displaystyle x\geq y\geq z\geq v} with and the positive real number t are such that x + v ≥ y + z then [ 2 ]

  7. 10 books to help you understand inequality — and possible ...

    www.aol.com/news/10-books-help-understand...

    These 10 books, including Stephanie Land's "Maid," will help you understand the inequalities built into America's economy. 10 books to help you understand inequality — and possible solutions ...

  8. Titu's lemma - Wikipedia

    en.wikipedia.org/wiki/Titu's_Lemma

    In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...

  9. Young's inequality for products - Wikipedia

    en.wikipedia.org/wiki/Young's_inequality_for...

    Proof [2]. Since + =, =. A graph = on the -plane is thus also a graph =. From sketching a visual representation of the integrals of the area between this curve and the axes, and the area in the rectangle bounded by the lines =, =, =, =, and the fact that is always increasing for increasing and vice versa, we can see that upper bounds the area of the rectangle below the curve (with equality ...