Search results
Results from the WOW.Com Content Network
Of particular interest to rectilinear polygons are problems of decomposing a given rectilinear polygon to simple units - usually rectangles or squares. There are several types of decomposition problems: In covering problems, the goal is to find a smallest set of units (squares or rectangles) whose union is equal to the polygon. The units may ...
Polygon decomposition is applied in several areas: [1] Pattern recognition techniques extract information from an object in order to describe, identify or classify it. An established strategy for recognising a general polygonal object is to decompose it into simpler components, then identify the components and their interrelationships and use this information to determine the shape of the object.
However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...
Guillotine partition is the process of partitioning a rectilinear polygon, possibly containing some holes, into rectangles, using only guillotine-cuts. A guillotine-cut (also called an edge-to-edge cut ) is a straight bisecting line going from one edge of an existing polygon to the opposite edge, similarly to a paper guillotine .
A rectilinear polygon can always be covered with a finite number of vertices of the polygon. [1] The algorithm uses a local optimization approach: it builds the covering by iteratively selecting maximal squares that are essential to the cover (i.e., contain uncovered points not covered by other maximal squares) and then deleting from the polygon the points that become unnecessary (i.e ...
In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular decagon, m=5, and it can be divided into 10 rhombs, with examples shown below. This decomposition can be seen as 10 of 80 faces in a Petrie polygon projection plane of the 5-cube.
And here we were, thinking the laws of physics were, like, set in stone or something.
The Dehn invariant can be expressed by decomposing each dihedral angle into a finite sum of basis elements = =,, where , is rational, , is one of the real numbers in the Hamel basis, and these basis elements are numbered so that , is the rational multiple of π that belongs to but not ′.