Search results
Results from the WOW.Com Content Network
Electro-chemical reaction Diagram of PEM MEA. A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers. [1] [2]
Diagram of a PEM fuel cell. Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower ...
Block diagram of a fuel cell. Source I (Paulsmith99 ) created this work entirely by myself, based on the original png version. Date 17:35, 25 June 2010 (UTC) Author Paulsmith99 Permission (Reusing this file) See below. Other versions Fuel Cell Block Diagram.png
If the fuel is a light hydrocarbon, for example, methane, another function of the anode is to act as a catalyst for steam reforming the fuel into hydrogen. This provides another operational benefit to the fuel cell stack because the reforming reaction is endothermic, which cools the stack internally.
The fuel cell was a stack design that allowed the fuel cell to be integrated with the plane's aerodynamic surfaces. [159] Fuel cell-powered unmanned aerial vehicles (UAV) include a Horizon fuel cell UAV that set the record distance flown for a small UAV in 2007. [160]
HT-PEM fuel cell systems are used for stationary and portable applications. [17] For example methanol fueled HT-PEM fuel cells are used as replacement of generators (e.g. off-grid applications, backup power, emergency-power supply, auxiliary power unit) and for range extension of electric vehicles (e.g. sports car Gumpert Nathalie). Typically ...
SOEC 60 cell stack. A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon dioxide) [1] by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas [2] (and/or carbon monoxide) and oxygen.
Direct methanol fuel cells or DMFCs are a subcategory of proton-exchange membrane fuel cells in which methanol is used as the fuel and a special proton-conducting polymer as the membrane (PEM). Their main advantage is low temperature operation and the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all ...