Search results
Results from the WOW.Com Content Network
The first scale for measuring earthquake magnitudes, developed in 1935 by Charles F. Richter and popularly known as the "Richter" scale, is actually the local magnitude scale, label ML or M L. [11] Richter established two features now common to all magnitude scales.
The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]
The moment magnitude scale (MMS; denoted explicitly with M w or Mwg, and generally implied with use of a single M for magnitude [1]) is a measure of an earthquake's magnitude ("size" or strength) based on its seismic moment.
The scale is logarithmic and defined such that a magnitude 1 star is exactly 100 times brighter than a magnitude 6 star. Thus each step of one magnitude is 100 5 ≈ 2.512 {\displaystyle {\sqrt[{5}]{100}}\approx 2.512} times brighter than the magnitude 1 higher.
Magnitude is a measurement of the strength of an earthquake. Officially it's called the moment magnitude scale. It's a logarithmic scale, meaning each number is 10 times as strong as the one ...
In two most recent investigations using statistically stable samples for Italian earthquakes (approximately 100,000 events over the period 1981–2002 in the Richter local [M L ] magnitude range of 3.5–5.8) [5] and for Indian earthquakes exemplified by an aftershock sequence of 121 events with M s (surface wave magnitude) > 4.0 in 2001 in the Bhuj area of northwestern India, [4] the latest ...
Seismic moment is the basis of the moment magnitude scale introduced by Caltech's Thomas C. Hanks and Hiroo Kanamori, which is often used to compare the size of different earthquakes and is especially useful for comparing the sizes of large (great) earthquakes. The seismic moment is not restricted to earthquakes.
The Nuclear Accident Magnitude Scale (NAMS) is an alternative to INES, proposed by David Smythe in 2011 as a response to the Fukushima Daiichi nuclear disaster. There were some concerns that INES was used in a confusing manner, and NAMS was intended to address the perceived INES shortcomings.