enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bond order - Wikipedia

    en.wikipedia.org/wiki/Bond_order

    In molecules which have resonance or nonclassical bonding, bond order may not be an integer.In benzene, the delocalized molecular orbitals contain 6 pi electrons over six carbons, essentially yielding half a pi bond together with the sigma bond for each pair of carbon atoms, giving a calculated bond order of 1.5 (one and a half bond).

  3. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The σ from the 2p is more non-bonding due to mixing, and same with the 2s σ. This also causes a large jump in energy in the 2p σ* orbital. The bond order of diatomic nitrogen is three, and it is a diamagnetic molecule. [12] The bond order for dinitrogen (1σ g 2 1σ u 2 2σ g 2 2σ u 2 1π u 4 3σ g 2) is three because two electrons are now ...

  4. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    This is called a covalent bond. The bond order is equal to the number of bonding electrons minus the number of antibonding electrons, divided by 2. In this example, there are 2 electrons in the bonding orbital and none in the antibonding orbital; the bond order is 1, and there is a single bond between the two hydrogen atoms. [citation needed]

  5. Triplet oxygen - Wikipedia

    en.wikipedia.org/wiki/Triplet_oxygen

    Under a molecular orbital theory framework, the oxygen-oxygen bond in triplet dioxygen is better described as one full σ bond plus two π half-bonds, each half-bond accounted for by two-center three-electron (2c-3e) bonding, to give a net bond order of two (1+2× ⁠ 1 / 2 ⁠), while also accounting for the spin state (S = 1).

  6. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Bond order is the number of chemical bonds between a pair of atoms. The bond order of a molecule can be calculated by subtracting the number of electrons in anti-bonding orbitals from the number of bonding orbitals, and the resulting number is then divided by two. A molecule is expected to be stable if it has bond order larger than zero.

  7. Bonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Bonding_molecular_orbital

    The MO diagram for dihydrogen. In the classic example of the H 2 MO, the two separate H atoms have identical atomic orbitals. When creating the molecule dihydrogen, the individual valence orbitals, 1s, either: merge in phase to get bonding orbitals, where the electron density is in between the nuclei of the atoms; or, merge out of phase to get antibonding orbitals, where the electron density ...

  8. Oxygen - Wikipedia

    en.wikipedia.org/wiki/Oxygen

    The bond can be variously described based on level of theory, but is reasonably and simply described as a covalent double bond that results from the filling of molecular orbitals formed from the atomic orbitals of the individual oxygen atoms, the filling of which results in a bond order of two.

  9. Natural bond orbital - Wikipedia

    en.wikipedia.org/wiki/Natural_bond_orbital

    In quantum chemistry, a natural bond orbital or NBO is a calculated bonding orbital with maximum electron density.The NBOs are one of a sequence of natural localized orbital sets that include "natural atomic orbitals" (NAO), "natural hybrid orbitals" (NHO), "natural bonding orbitals" (NBO) and "natural (semi-)localized molecular orbitals" (NLMO).