enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.

  3. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    The blue picture illustrates an example of fitting the log-logistic distribution to ranked maximum one-day October rainfalls and it shows the 90% confidence belt based on the binomial distribution. The rainfall data are represented by the plotting position r /( n +1) as part of the cumulative frequency analysis .

  4. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Larger kurtosis indicates a more serious outlier problem, and may lead the researcher to choose alternative statistical methods. D'Agostino's K-squared test is a goodness-of-fit normality test based on a combination of the sample skewness and sample kurtosis, as is the Jarque–Bera test for normality.

  5. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    Example distribution with positive skewness. These data are from experiments on wheat grass growth. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. The skewness value can be positive, zero, negative, or undefined.

  6. Nonparametric skew - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_skew

    In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. [ 1 ] [ 2 ] It is a measure of the skewness of a random variable's distribution —that is, the distribution's tendency to "lean" to one side or the other of the mean .

  7. Skewness risk - Wikipedia

    en.wikipedia.org/wiki/Skewness_risk

    Skewness risk plays an important role in hypothesis testing. The analysis of variance , one of the most common tests used in hypothesis testing, assumes that the data is normally distributed. If the variables tested are not normally distributed because they are too skewed, the test cannot be used.

  8. Shape of a probability distribution - Wikipedia

    en.wikipedia.org/wiki/Shape_of_a_probability...

    In statistics, the concept of the shape of a probability distribution arises in questions of finding an appropriate distribution to use to model the statistical properties of a population, given a sample from that population.

  9. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    Bayesian robust regression, being fully parametric, relies heavily on such distributions. Under the assumption of t-distributed residuals, the distribution is a location-scale family. That is, () /. The degrees of freedom of the t-distribution is sometimes called the kurtosis parameter. Lange, Little and Taylor (1989) discuss this model in some ...