Search results
Results from the WOW.Com Content Network
A root-phi rectangle divides into a pair of Kepler triangles (right triangles with edge lengths in geometric progression). The root-φ rectangle is a dynamic rectangle but not a root rectangle. Its diagonal equals φ times the length of the shorter side. If a root-φ rectangle is divided by a diagonal, the result is two congruent Kepler triangles.
A magic square is an arrangement of numbers in a square grid so that the sum of the numbers along every row, column, and diagonal is the same. Similarly, one may define a magic cube to be an arrangement of numbers in a cubical grid so that the sum of the numbers on the four space diagonals must be the same as the sum of the numbers in each row, each column, and each pillar.
A distinctive feature of this shape is that when a square section is added—or removed—the product is another golden rectangle, having the same aspect ratio as the first. Square addition or removal can be repeated infinitely, in which case corresponding corners of the squares form an infinite sequence of points on the golden spiral , the ...
The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length . In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal.
A perfect parallelepiped is a parallelepiped with integer-length edges, face diagonals, and space diagonals. In 2009, dozens of perfect parallelepipeds were shown to exist, [3] answering an open question of Richard Guy. One example has edges 271, 106, and 103, minor face diagonals 101, 266, and 255, major face diagonals 183, 312, and 323, and ...
If a cyclic quadrilateral is also orthodiagonal, the distance from the circumcenter to any side equals half the length of the opposite side. [23] In a cyclic orthodiagonal quadrilateral, the distance between the midpoints of the diagonals equals the distance between the circumcenter and the point where the diagonals intersect. [23]
More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...