Search results
Results from the WOW.Com Content Network
Burnup is an important factor in determining the types and abundances of isotopes produced by a fission reactor. Breeder reactors by design have high burnup compared to a conventional reactor, as breeder reactors produce more of their waste in the form of fission products, while most or all of the actinides are meant to be fissioned and destroyed.
Experimental Breeder Reactor I (EBR-I) is a decommissioned research reactor and U.S. National Historic Landmark located in the desert about 18 miles (29 km) southeast of Arco, Idaho. It was the world's first breeder reactor . [ 3 ]
The Experimental Breeder Reactor II. Experimental Breeder Reactor-II (EBR-II) was a sodium-cooled fast reactor designed, built and operated by Argonne National Laboratory at the National Reactor Testing Station in Idaho. It was shut down in 1994. Custody of the reactor was transferred to Idaho National Laboratory after its founding in 2005.
His "reactor" was a bored-out block of lead, and he used lithium from $1,000 worth of purchased batteries to purify the thorium ash using a Bunsen burner. [3] [4] Hahn ultimately hoped to create a breeder reactor, using low-level isotopes to transform samples of thorium and uranium into fissile isotopes. [5]
The plutonium created could be used to fuel the breeder core, with enough left over to run other reactors. A breeder potentially generates not only electricity, but also income through fuel sales. The first power-producing reactor was a breeder, the Experimental Breeder Reactor I (EBR-I) at what became the Idaho National Laboratory. On December ...
In the pool type, the primary coolant is contained in the main reactor vessel, which therefore includes the reactor core and a heat exchanger. The US EBR-2, French Phénix and others used this approach, and it is used by India's Prototype Fast Breeder Reactor and China's CFR-600. In the loop type, the heat exchangers are outside the reactor tank.
A cutaway model of the reactor. The core, that is the nuclear fuel at the heart of the reactor has dimensions of 2 meters in height by 0.75 meters in diameter, similar to the BN-800 reactor. [1] The BN-600 reactor is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia.
The BN-800 reactor (Russian: реактор БН–800) is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical power.