Search results
Results from the WOW.Com Content Network
Hertz vectors, or the Hertz vector potentials, are an alternative formulation of the electromagnetic potentials. They are most often introduced in electromagnetic theory textbooks as practice problems for students to solve. [1] There are multiple cases where they have a practical use, including antennas [2] and waveguides. [3]
This is an illustration of the shortest vector problem (basis vectors in blue, shortest vector in red). In the SVP, a basis of a vector space V and a norm N (often L 2) are given for a lattice L and one must find the shortest non-zero vector in V, as measured by N, in L.
The block Wiedemann algorithm can be used to calculate the leading invariant factors of the matrix, ie, the largest blocks of the Frobenius normal form.Given and , where is a finite field of size , the probability that the leading < invariant factors of are preserved in = is
It is then determined by the coordinates of that bound vector's terminal point. Thus the free vector represented by (1, 0, 0) is a vector of unit length—pointing along the direction of the positive x-axis. This coordinate representation of free vectors allows their algebraic features to be expressed in a convenient numerical fashion.
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors.Geometric algebra is built out of two fundamental operations, addition and the geometric product.
"The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1– 14. doi: 10.1016/0024-3795(93)90124-7. Murty, Katta G. (January 1972). "On the number of solutions to the complementarity problem and spanning properties of complementary cones" (PDF).
Vector optimization is a subarea of mathematical optimization where optimization problems with a vector-valued objective functions are optimized with respect to a given partial ordering and subject to certain constraints.