Search results
Results from the WOW.Com Content Network
A Taxicab number is the smallest positive number that can be expressed as a sum of two positive integer cubes in n distinct ways. The smallest taxicab number after Ta(1) = 1, is Ta(2) = 1729, [4] expressed as
Fermat knew that a fourth power cannot be the sum of two other fourth powers (the n = 4 case of Fermat's Last Theorem; see Fermat's right triangle theorem). Euler conjectured that a fourth power cannot be written as the sum of three fourth powers, but 200 years later, in 1986, this was disproven by Elkies with: 20615673 4 = 18796760 4 ...
With even cubes, there is considerable restriction, for only 00, o 2, e 4, o 6 and e 8 can be the last two digits of a perfect cube (where o stands for any odd digit and e for any even digit). Some cube numbers are also square numbers; for example, 64 is a square number (8 × 8) and a cube number (4 × 4 × 4) .
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
The largest cube that can pass through a 4D hypercube. ... where the signs + or − are chosen at random with equal probability 1/2 ... 4, 2, 1, 5, 44, 1, 4, 1, 2, 4 ...
The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Here is an angle in the unit circle; taking 1 / 3 of that angle corresponds to taking a cube root of a complex number; adding −k 2 π / 3 for k = 1, 2 finds the other cube roots; and multiplying the cosines of these resulting angles by corrects for scale.