Search results
Results from the WOW.Com Content Network
In chemistry, a chemical oscillator is a complex mixture of reacting chemical compounds in which the concentration of one or more components exhibits periodic changes. They are a class of reactions that serve as an example of non-equilibrium thermodynamics with far-from-equilibrium behavior.
The Armstrong oscillator [1] (also known as the Meissner oscillator [2]) is an electronic oscillator circuit which uses an inductor and capacitor to generate an oscillation. The Meissner patent from 1913 describes a device for generating electrical vibrations, a radio transmitter used for on–off keying. Edwin Armstrong presented in 1915 some ...
The simplest example of this is an isotropic oscillator, where the restoring force is proportional to the displacement from equilibrium with the same restorative constant in all directions. = This produces a similar solution, but now there is a different equation for every direction.
In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. [1] [2] For example, if an emissive state has a small oscillator strength, nonradiative decay will outpace radiative decay.
A Belousov–Zhabotinsky reaction, or BZ reaction, is one of a class of reactions that serve as a classical example of non-equilibrium thermodynamics, resulting in the establishment of a nonlinear chemical oscillator. The only common element in these oscillators is the inclusion of bromine and an acid.
The one-dimensional harmonic oscillator is one of the few systems that allows an exact solution of the Schrödinger equation. Alternatively, the nuclear motion (rovibrational) Schrödinger equation can be solved in a special frame (an Eckart frame) that rotates and translates with the molecule.
In order to solve the equation of an electron in a spherical potential, Hartree first introduced atomic units to eliminate physical constants. Then he converted the Laplacian from Cartesian to spherical coordinates to show that the solution was a product of a radial function () / and a spherical harmonic with an angular quantum number , namely = (/) (,).
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.