Search results
Results from the WOW.Com Content Network
Divide-and-conquer approach to sort the list (38, 27, 43, 3, 9, 82, 10) in increasing order. Upper half: splitting into sublists; mid: a one-element list is trivially sorted; lower half: composing sorted sublists. The divide-and-conquer paradigm is often used to find an optimal solution of a problem.
File contents are distributed over several storage servers using striping, i.e. each file is split into chunks of a given size and these chunks are distributed over the existing storage servers. The size of these chunks can be defined by the file system administrator.
Free lists make the allocation and deallocation operations very simple. To free a region, one would just link it to the free list. To allocate a region, one would simply remove a single region from the end of the free list and use it. If the regions are variable-sized, one may have to search for a region of large enough size, which can be ...
External sorting algorithms generally fall into two types, distribution sorting, which resembles quicksort, and external merge sort, which resembles merge sort. External merge sort typically uses a hybrid sort-merge strategy. In the sorting phase, chunks of data small enough to fit in main memory are read, sorted, and written out to a temporary ...
In data deduplication, data synchronization and remote data compression, Chunking is a process to split a file into smaller pieces called chunks by the chunking algorithm. It can help to eliminate duplicate copies of repeating data on storage, or reduces the amount of data sent over the network by only selecting changed chunks.
Left: Recursive subdivision of a cube into octants. Right: The corresponding octree. An octree is a tree data structure in which each internal node has exactly eight children. Octrees are most often used to partition a three-dimensional space by recursively subdividing it into eight octants. Octrees are the three-dimensional analog of quadtrees.
The canonical 2-way merge algorithm [1] stores indices i, j, and k into A, B, and C respectively. Initially, these indices refer to the first element, i.e., are 1. If A[i] < B[j], then the algorithm copies A[i] into C[k] and increases i and k. Otherwise, the algorithm copies B[j] into C[k] and increases j and k.
The buddy memory allocation technique is a memory allocation algorithm that divides memory into partitions to try to satisfy a memory request as suitably as possible. This system makes use of splitting memory into halves to try to give a best fit.