Search results
Results from the WOW.Com Content Network
The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
The (n − 3)-faces of an n-polytope are called peaks. A peak contains a rotational axis of facets and ridges in a regular polytope or honeycomb. For example: The peaks of a 3D polyhedron or plane tiling are its 0-faces or vertices. The peaks of a 4D polytope or 3-honeycomb are its 1-faces or edges.
Uniform polyhedron: Elements: F = 62, ... 12 regular pentagonal faces, with 60 vertices, and 120 edges. Names ... 3-4 Edge 5-4 Face Square Face Triangle Face
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.
It has three square faces, six edges, and four vertices. It has an unexpected property that every face is in contact with every other face on two edges, and every face contains all the vertices, which gives an example of an abstract polytope whose faces are not determined by their vertex sets.
The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. [1] A polyhedron is considered to be convex if: [2] The shortest path between any two of its vertices lies either within its interior or on its boundary. None of its faces are coplanar—they do not share the same plane and do not ...
The hemi-cube is a regular projective polyhedron with 3 square faces, 6 edges, and 4 vertices.. The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the centrally symmetric Platonic solids, as well as two infinite classes of even dihedra and hosohedra: [4]