enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    A graphical tool for assessing normality is the normal probability plot, a quantile-quantile plot (QQ plot) of the standardized data against the standard normal distribution. Here the correlation between the sample data and normal quantiles (a measure of the goodness of fit) measures how well the data are modeled by a normal distribution.

  3. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Wilk_test

    The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  4. Shapiro–Francia test - Wikipedia

    en.wikipedia.org/wiki/Shapiro–Francia_test

    The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test .

  5. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    Heckman's correction involves a normality assumption, provides a test for sample selection bias and formula for bias corrected model. Suppose that a researcher wants to estimate the determinants of wage offers, but has access to wage observations for only those who work.

  6. Lilliefors test - Wikipedia

    en.wikipedia.org/wiki/Lilliefors_test

    Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]

  7. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In statistics, D'Agostino's K 2 test, named for Ralph D'Agostino, is a goodness-of-fit measure of departure from normality, that is the test aims to gauge the compatibility of given data with the null hypothesis that the data is a realization of independent, identically distributed Gaussian random variables.

  8. Anderson–Darling test - Wikipedia

    en.wikipedia.org/wiki/Anderson–Darling_test

    The Anderson–Darling test assesses whether a sample comes from a specified distribution. It makes use of the fact that, when given a hypothesized underlying distribution and assuming the data does arise from this distribution, the cumulative distribution function (CDF) of the data can be transformed to what should follow a uniform distribution.

  9. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    Tukey's HSD and Scheffé's procedure are one-step procedures and can be done without the omnibus F having to be significant. They are "a posteriori" tests, but in this case, "a posteriori" means "without prior knowledge", as in "without specific hypotheses." On the other hand, Fisher's Least Significant Difference test is a two-step procedure.