enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    is the scalar distance for the second observation of the orbiting body (it and its vector, r 2, are in the Equatorial Coordinate System), are coefficients as previously stated; Various methods can be used to find the root, a suggested method is the Newton–Raphson method. The root must be physically possible (i.e., not negative nor complex ...

  3. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  5. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case

  6. Gauss–Jacobi quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Jacobi_quadrature

    Gauss–Jacobi quadrature can be used to approximate integrals of the form () (+) where ƒ is a smooth function on [−1, 1] and α, β > −1. The interval [−1, 1] can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points.

  7. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...

  8. Carl Friedrich Gauss - Wikipedia

    en.wikipedia.org/wiki/Carl_Friedrich_Gauss

    This turned out to be accurate within a half-degree when Franz Xaver von Zach on 7 and 31 December at Gotha, and independently Heinrich Olbers on 1 and 2 January in Bremen, identified the object near the predicted position. [158] [s] Gauss's method leads to an equation of the eighth degree, of which one solution, the Earth's orbit, is known ...

  9. Gauss–Kronrod quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Gauss–Kronrod_quadrature...

    The Gauss–Kronrod quadrature formula is an adaptive method for numerical integration. It is a variant of Gaussian quadrature , in which the evaluation points are chosen so that an accurate approximation can be computed by re-using the information produced by the computation of a less accurate approximation.