enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    The most general proper Lorentz transformation Λ(v, θ) includes a boost and rotation together, and is a nonsymmetric matrix. As special cases, Λ(0, θ) = R(θ) and Λ(v, 0) = B(v). An explicit form of the general Lorentz transformation is cumbersome to write down and will not be given here.

  3. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    (The improper Lorentz transformations have determinant −1.) The subgroup of proper Lorentz transformations is denoted SO(1, 3). The subgroup of all Lorentz transformations preserving both orientation and direction of time is called the proper, orthochronous Lorentz group or restricted Lorentz group, and is denoted by SO + (1, 3). [a]

  4. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  5. Four-vector - Wikipedia

    en.wikipedia.org/wiki/Four-vector

    Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...

  6. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    A derivation for the transformation of the Lorentz force for the particular case u = 0 is given here. [4] A more general one can be seen here. [5] The transformations in this form can be made more compact by introducing the electromagnetic tensor (defined below), which is a covariant tensor.

  7. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  8. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    Lorentz transformations can be parametrized by rapidity φ for a boost in the direction of a three-dimensional unit vector ^ = (,,), and a rotation angle θ about a three-dimensional unit vector ^ = (,,) defining an axis, so ^ = (,,) and ^ = (,,) are together six parameters of the Lorentz group (three for rotations and three for boosts). The ...

  9. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    A tensor field is then defined as a map from the manifold to the tensor bundle, each point being associated with a tensor at . The notion of a tensor field is of major importance in GR. For example, the geometry around a star is described by a metric tensor at each point, so at each point of the spacetime the value of the metric should be given ...